مجموعه های احاطه گر امن گراف ها

thesis
abstract

مجموعه های احاطه گر امن و رومن و رومن ضعیف و مجموعه احاطه گر و رابطه بین آنها بررسی شذه است . عدد اصلی مجموعه های زائد و احاطه گر امن برای درخت t با ماکزیموم درجه بزرگتر یا مساوی 3 بررسی می شود .

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

بررسی مجموعه های احاطه گر همبند در گراف ها

یک مجموعه ی احاطه گر همبند برای گراف g(v,e) زیر مجموعه ای مانند d از v است به طوری که هر رأس در v-d با حداقل یکی از اعضای d مجاور است و زیرگراف القایی روی مجموعه ی d همبند است. به اندازه ی کوچکترین مجموعه ی احاطه گر همبند، عدد احاطه گری همبندی می گویند و با gamma_{c}(g) نمایش می دهند. مفهوم احاطه گری همبندی در انواع شبکه ها از جمله شبکه های بیسیم ادهاک برای یافتن یک پشتیبان مجازی با اندازه ی می...

15 صفحه اول

بررسی مجموعه ی احاطه گر کلی بحرانی در گراف ها

فرض کنید g یک گراف ساده و غیر جهت دار با مجموعه رئوس v(g) باشد. مجموعه s?v(g) را یک مجموعه احاطه گر می نامیم، هرگاه هر راس در مجموعه v-s با بعضی رئوس s مجاور باشد. مجموعه s را یک مجموعه احاطه گر کلی می نامیم، هرگاه هر راس از مجموعه رئوس v(g) با بعضی رئوس s مجاور باشد و g[s]راس تنها نداشته باشد . عدد احاطه گر کلی برابر است با کمترین اندازه یک مجموعه احاطه گر کلی و با ?_t (g) نمایش می دهیم. گراف ...

15 صفحه اول

انتشار احاطه گر در گراف ها

گراف ها اغلب به صورت مدل هایی از شبکه های ارتباطی مورد استفاده قرار می گیرند. فرض کنید یک ایستگاه رادیویی می خواهد امواج با ظرفیت های محدود را به شهرهایی مختلف منتشر کند. مدل این وضعیت را با یک گراف نمایش می دهند به طوری که رأس ها ایستگاه های مخابره کننده هستند و مجاورت دو رأس نشان می دهد که این رأس ها هر کدام در دامنه دیگری قرار دارند. هنگامی که مخابره کننده ها فرکانس مشابه منتشر می کنند تداخل...

15 صفحه اول

نتایجی برای عدد احاطه گر ماکسیمال ۲-رنگین کمانی در گراف ها

تابع  یک تابع احاطه گر 2-رنگین کمانی  برای گراف  نامیده می­شود هرگاه برای هر راس  با شرط  داشته باشیم . وزن یک 2rdf  برابر است با . عدد احاطه گر 2-رنگین کمانی گراف  را که با نماد  نمایش می­دهیم کمترین وزن یک 2rdf در گراف  است. تابع احاطه­گر ماکسیمال 2-رنگین کمانی (m2rdf) برای گراف  یک تابع احاطه­گر 2-رنگین کمانی  می­باشد به­طوری که مجموعه­ی  یک مجموعه­ی احاطه­گر برای گراف  نباشد. وزن یک m2rdf  ...

full text

مجموعه های احاطه گر در گراف ها و مسُله تخصیص امکانات در شبکه حمل و نقل

مجموعه ی s ? v از رئوس در گراف g = (v;e) را مجموعه ی احاطه گر می نامیم اگر هر رأس در گراف g عضو مجموعه ی s باشد یا حداقل به یکی از رئوس s متصل باشد. به دلیل جذابیت های کاربردی و تحقیقاتی این مفهوم، تا کنون مطالعات بسیاری بر روی این مبحث انجام شده است. هدف از انجام این پژوهش استفاده از قابلیت های این مجموعه در مکان یابی برای تخصیص امکانات در سطح شهر اصفهان بوده است.

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023